Eigenvalue Maximization in Sparse PCA

نویسنده

  • Laurent El Ghaoui
چکیده

We examine the problem of approximating a positive, semidefinite matrix Σ by a dyad xxT , with a penalty on the cardinality of the vector x. This problem arises in the sparse principal component analysis problem, where a decomposition of Σ involving sparse factors is sought. We express this hard, combinatorial problem as a maximum eigenvalue problem, in which we seek to maximize, over a box, the largest eigenvalue of a symmetric matrix that is linear in the variables. This representation allows to use the techniques of robust optimization, to derive a bound based on semidefinite programming. The quality of the bound is investigated using a primalization technique inspired by Nemirovski and Ben-Tal (2002). Notation. The notation 1 denotes the vector of ones (with size inferred from context), while Card(x) denotes the cardinality of a vector x (number of non-zero elements). We denote by ei the unit vectors of R . For a n × n matrix X, X 0 means X is symmetric and positive semi-definite. The notation B+, for a symmetric matrix B, denotes the matrix obtained from B by replacing negative eigenvalues by 0. Throughout, the symbol E refers to expectations taken with respect to the normal Gaussian distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sparse Eigenvalue Problem

In this paper, we consider the sparse eigenvalue problem wherein the goal is to obtain a sparse solution to the generalized eigenvalue problem. We achieve this by constraining the cardinality of the solution to the generalized eigenvalue problem and obtain sparse principal component analysis (PCA), sparse canonical correlation analysis (CCA) and sparse Fisher discriminant analysis (FDA) as spec...

متن کامل

A D.C. Programming Approach to the Sparse Generalized Eigenvalue Problem

In this paper, we consider the sparse eigenvalue problem wherein the goal is to obtain a sparse solution to the generalized eigenvalue problem. We achieve this by constraining the cardinality of the solution to the generalized eigenvalue problem and obtain sparse principal component analysis (PCA), sparse canonical correlation analysis (CCA) and sparse Fisher discriminant analysis (FDA) as spec...

متن کامل

Deflation Methods for Sparse PCA

In analogy to the PCA setting, the sparse PCA problem is often solved by iteratively alternating between two subtasks: cardinality-constrained rank-one variance maximization and matrix deflation. While the former has received a great deal of attention in the literature, the latter is seldom analyzed and is typically borrowed without justification from the PCA context. In this work, we demonstra...

متن کامل

Nonlinear Optimization: a bridge from theory to applications

of the CONTRIBUTED LECTURES Unsupervised Visual Object Categorization by Sparse PCA Selin D. Ahipaşaoğlu Engineering Systems & Design Singapore University of Technology & Design, Singapore The unsupervised visual object categorization problem attempts to uncover the category information of a given image database without relying on any information on the image content. We develop a technique bas...

متن کامل

PEM-PCA: A Parallel Expectation-Maximization PCA Face Recognition Architecture

Principal component analysis or PCA has been traditionally used as one of the feature extraction techniques in face recognition systems yielding high accuracy when requiring a small number of features. However, the covariance matrix and eigenvalue decomposition stages cause high computational complexity, especially for a large database. Thus, this research presents an alternative approach utili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008